316,544 research outputs found

    Genomic Variation of Five Indonesian Cacao (Theobroma Cacao L.) Varieties Based on Analysis Using Next Generation Sequencing

    Full text link
    Indonesian cacao productivity is still low mainly due to the lack availability of superior cacao planting materials. A new breeding method is necessary to expedite cacao yield improvement programs. To date, no study has yet been done to characterize Indonesian cacao varieties at the whole genome level. The objective of this study was to characterize genomic variation of five superior Indonesian cacao varieties using next-generation sequencing. Genetic materials used were five Indonesian cacao varieties, i.e. ICCRI2, ICCRI3, ICCRI4, SUL2 and ICS13. Genome sequences were mapped to the cacao reference genome sequence of Criollo variety. Sequence alignment and genomic variation discovery were done using Bowtie2 and mpileup software of Samtools, respectively. A total of 2,326,088 single nucleotide polymorphisms (SNPs) and 362,081 insertions and deletions (Indels) were obtained from this study. In average, a DNA variant was identified in every 121 nucleotides of the genome sequence. Most of the DNA variants were located outside the genes. Only 347,907 SNPs and Indels (13.18%) were located within protein coding region (exon). Among the DNA variations within exon, 188,949 SNPs caused missense mutation and 1,535 SNPs induced nonsense mutation. Unique gene-based SNPs were also discovered from this study that can be used as fingerprints for the particular cacao variety. The DNA variants obtained were excellent DNA marker resources to support cacao breeding programs. The SNPs discovered are useful as materials for genome-wide SNP chip development to be used for gene and QTL tagging of important traits for expediting national cacao breeding program

    The effect of genomic information on optimal contribution selection in livestock breeding programs

    Get PDF
    BACKGROUND: Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity. METHODS: The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences. RESULTS: Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data. CONCLUSIONS: The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families

    PolyTB: a genomic variation map for Mycobacterium tuberculosis

    Get PDF
    Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest

    A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture.

    Get PDF
    Recent studies have identified a small number of genomic rearrangements that occur frequently in the general population. Bioinformatics tools are now available for systematic genome-wide surveys of higher-order structures predisposing to such common variations in genomic architecture. Segmental duplications (SDs) constitute up to 5 per cent of the genome and play an important role in generating additional rearrangements and in disease aetiology. We conducted a genome-wide database search for a form of SD, palindromic segmental duplications (PSDs), which consist of paired, inverted duplications, and which predispose to inversions, duplications and deletions. The survey was complemented by a search for SDs in tandem orientation (TSDs) that can mediate duplications and deletions but not inversions. We found more than 230 distinct loci with higher-order genomic structure that can mediate genomic variation, of these about 180 contained a PSD. A number of these sites were previously identified as harbouring common inversions or as being associated with specific genomic diseases characterised by duplication, deletions or inversions. Most of the regions, however, were previously unidentified; their characterisation should identify further common rearrangements and may indicate localisations for additional genomic disorders. The widespread distribution of complex chromosomal architecture suggests a potentially high degree of plasticity of the human genome and could uncover another level of genetic variation within human populations

    Data for: "Investigations into the within-host genomic diversity and phenotypic variation of Plasmodium falciparum"

    Get PDF
    Quantitative data produced to support a PhD thesis on the within-host genomic diversity and phenotypic variation of Plasmodium falciparum

    Future trends in Animal Breeding due to new genetic tecnologies

    Full text link
    The Darwin theory of evolution by natural selection is based on three principles: (a) variation; (b) inheritance; and (c) natural selection. Here, I take these principles as an excuse to review some topics related to the future research prospects in Animal Breeding. With respect to the first principle I describe two forms of variation different from mutation that are becoming increasingly important: variation in copy number and microRNAs. With respect to the second principle I comment on the possible relevance of non-mendelian inheritance, the so-called epigenetic effects, of which the genomic imprinting is the best characterized in domestic species. Regarding selection principle I emphasize the importance of selection for social traits and how this could contribute to both productivity and animal welfare. Finally, I analyse the impact of molecular biology in Animal Breeding, the achievements and limitations of quantitative trait locus and classical marker-assisted selection and the future of genomic selectio
    corecore